L 0T FE COPY_ @
| : " EPURI 2L - DG RELEASE

NGTRIBUTIRE L PATEL

N
]

MASSACHUSETTS INSTITUTE OF TECHNOLOGY VLS!I PUBLICATIONS

VLSI Memo No. 88-486

November 1988
DTIC

ELECTE
GIRAPHE V3.3: A USER’S MANUAL WITH EXAMPLES FEB 06 1989}
/" Robert M. Harris and Duane S. Boning 5
Abstract

" —) GIRAPHE is a scientific plotting program that generates pibts from files of tabular data.
In addition to this'basic capability, however, a great deal of dffort has transformed the
GIRAPHE program into a powerful data analysis utility. Fheé principal capabilities and
attributes of GIRAPHE are:

. Generatxon of graphs from files of tabular data:

L g ——

“%» The appearance of plots is spec1ﬁed by the user through the
__ GIRAPHE “command” file, .
T e Support of linear, logarithmic, and reciprocal axes, ~

Shorthand notation in the “data” file to express complex _
collections of data. e L,

Expressnon evaluation to mampulate data prior to plotting.

e Support for a variety of graphics devices: \GIRAPHE is capable

- Of generating output for convent—o\nal?raphlcs terminals (such as
| the VT241 or Tektronix terminals), workstation displays (running
the X window system), and hard-copy printers or plotters
(PostScript and HPGL output, for example).

o Support for incorporation of data directly into the command file
and acceptance of data from the standard input, Thus,
GIRAPHE can serve as a scientific plotting filtér between data
generating programs and display devices.

¢ A fully interpretive language, where commands are executed
) unmedlately, GIRAPHE can thus be used as a “shell,” with the
user entering commands directly from the keyboard. -

"« Operation under the Unix! (or Ultrix*) operating system.

AD-A204 403

y L N . (’—s_._

‘ t Unix is a trademark of the American Telephone and Telegraph Company.
* Ultrix is a trademark of the Digital Equipment Corporation.

Microsystems Massachusetts Cambridge Telephone
Research Center Institute Massachusetts (617) 253-8138

Room 39-321 of Technology 02139 8 9 2

GIRAPHE V3.3
A User’s Manual with Examples

Robert M. Harris and Duane S. Boning
MIT Microsystems Technology Laboratory

September 13, 1988

©Massachusetts Institute of Technology 1988

Contents

1

Introduction

1.1 Capabilities o oo
1.2 Genealogy and Acknowledgments
1.3 BugReports e
OVerview i i e e e e e e e e e e e e e e e

1.4

Examples

2.1
2.2
23
2.4
2.5

Example 1 - Basic Example
Example 2 - Expression Evaluator with Data File
Example 3 - Multiple Axes and Data Files
Example 4 - Familiesof Data
OtherExamples

Running the program
Output e e e e e e e e e e

3.1

3.2
3.3

3.1.1
3.1.2

Output Destination
Output Device Type

ColoTS . . . i i e e e e e e e e e e e e e e e e e e
Miscellaneous Options

3.3.1
3.3.2
3.3.3
3.34

LogFile e
Silent OQutput
Termination Wait
Command Continuation

3.4 Common Mistakes i i v i i i i i i e e e e e e

Command File Statements

4.1 Axes

4.2

4.1.1
4.1.2
4.1.3
4.14
4.1.5
4.16

The AXISstatement ¢ v o v v v v v v v v v e
The USE statement en...
The LINEAR statement
The SEMILOG statement
The LOGLOG statement
The ARRHENIUS statement

Displaying Text ittt

4.2.1
4.2.2
4.23
4.24
4.2.5
4.2.6

The TITLE statemento
The LABEL statement
The XLABEL and YLABEL statements
The ANNOTATE and TEXT statement
The KEY statement
The LEGEND statement

4.3 ManipulatingData 0000

4.3.1 The READstatement 34

4.3.2 The PLOT statement 35

4.3.3 The WRITE statement 36

4.4 Miscellaneous Statements 37
44.1 The COMMENT statement 37

442 The SYNTAXstatement 37

443 TheSET statemmento uuvueue.. 37

444 The INCLUDEstatement 38

445 TheENDstatement 38

5 Data Format 39
5.1 Basicformat e e e 39
5.2 Datadirectives e e e e e 39
521 .eolumn e e e e e e e e 39

5.22 .parameter e e e e e e e e e e e 39

5.2.3 Bet e e e e e e e e e e e e e e e e e 40

524 remark e e e e e e e e e e e 40

525 wonand.off 40

526 end e e e e e e e e 40

6 Expression Evaluator 41
Index 43

List of Tables

I Common mfd Device Typeso v i i i i i i e 15
I' Summaryof AxisTypes 20
II Mathematical Functions 41
IV Predefined Constants.0000... 42
. Accession For L
| NTIS GRA&I -
DTIC TAB O
! Unannounced O
g | Justiricadion |
e B
o | Distribution/
Avallability Codes
; jAvall and/or
‘Dist Speecial

; A

e T —

1 Introduction

GIRAPHE is a general purpose scientific plotting and data manipulation program.
This introduction summarizes the capabilities of the program and describes the
history behind GIRAPHE.

1.1 Capabilities

Fundamentally, GIRAPHE is a scientific plotting program that generates plots from
files of tabular data. In addition to this basic capability, however, a great deal of
effort has transformed the GIRAPHE program into a powerful data analysis (and the-
sis figure generating) utility. The principal capabilities and attributes of GIRAPHE
are:

o Generation of graphs from files of tabular data.

e The appearance of plots is specified by the user through the GIRAPHE “com-
mand” file.

e Support of linear, logarithmic, and reciprocal axes.
e Shorthand notation in the “data” file to express complex collections of data.
¢ Expression evaluation to manipulate data prior to plotting.

¢ Support for a variety of graphics devices. GIRAPHE is capable of generating
output for conventional graphics terminals (such as the VT241 or Tektronix
terminals), workstation displays (running the X window system), and hard-
copy printers or plotters (PostScript and HPGL output, for example). .

e Support for incorporation of data directly into the command file and accep-
tance of data from the standard input. Thus, GIRAPHE can serve as a scientific
plotting filter between data generating programs and display devices.

e A fully interpretive language, where commands are executed immediately.
GIRAPHE can thus be used as a “shell,” with the user entering commands
directly from the keyboard.

o Operation under the Unix! (or Ultrix*) operating system.

*VMS and Ultrix are trademarks of the Digital Equipment Corporation.
tUnix is a trademark of the American Telephone and Telegraph Company.

1.2 Genealogy and Acknowledgments

The first version of GIRAPHE was made available for use within the MIT Microsys-
tems Technology Laboratory in the Fall of 1986. The program has been built on
the MFB device-independent graphics system from UC Berkeley, and uses parts of
code from the MASTIF Workstation by Duane Boning. Major modifications and
enhancements of the program were made by Bob Harris during the summer and fall
of 1987. The program was exercised extensively by the authors, as well as by Jarvis
Jacobs and Kurt Ware (whose bug reports have helped substantially in stabilizing
the program). Subsequent enhancements and bug fixes during 1988 by both Harris
and Boning have culminated in GIRAPHE V3.3; this version supersedes GIRAPHE
V2.8, and is not command file compatible. The authors also thank Kurt Ware for
extensive comments on this document, the first edition of the GIRAPHE manual.

1.3 Bug Reports

Bugs are anything in GIRAPHE that does not work as outlined in this manual. If
something is difficult or inconvenient to do in GIRAPHE, that too is a problem we
would like to hear about. Reports of bugs and additional comments are highly
useful, not only in fixing the program, but in guiding future enhancements of the
program. Submit reports to bug-giraphe@bacall.mit.edu; please be as specific as
possible, and include (or tell where can be found) the command and data files that
generate the bug.

1.4 Overview

The best way to begin using a program is to learn from known examples. For this
reason, we begin this manual in Section 2 with a number of examples illustrating
the basic use of the program. We begin with “minimal” GIRAPHE command and
data files; subsequent examples introduce more powerful and complex features of
the program.

Section 3 summarizing the invocation of the program follows the examples. In
order to use GIRAPHE effectively, one must understand three main aspects of the
program; the syntax and functionality provided by each is described in this man-
ual. These three aspects are, first, the command file {which describes how the
plot is to be generated), discussed in a reference format in Section 4; second, the
data file (which describes the data to be used), discussed in Section 5, and finally
the expression evaluator (which enables one to manipulate the data), discussed in
Section 6.

2 Examples

In this section, we begin with a simple example summarizing the basic structure of
the GIRAPHE command and data files, and showing the basic plotting capability
of the program. In successive examples, we introduce the expression evaluator, the
annotation and key commands, and finally the idea of a family of curves.

2.1 Example 1 — Basic Example

We begin with a very simple example involving only a single curve to be plotted
from a single file of data. The GIRAPHE command file, named ezamplel.grp looks
like:

Title Plot of Temperature vs Time
XLabel Time (minutes)

YLabel Temperature (Celsius)

Linear xmin=0 xmax=20 ymin=900 ymax=1200
Read File=examplel.gdf xexp=#1 yexp=#2
Plot Line=solid

End

while the data file, named ezamplel.gdf appears as:

0 926
b 960
10 980
16 1026
20 1100
26 1250

The results produced by running GIRAPHE on this command file are shown in
figure 1. In this figure, we see the single title line centered above the plot. We have
specified linear axes for the plot, and have supplied the minimum and maximum
values to be used on these axes. We then specify where the data is to be found with
the “read” statement, and indicate that the “x” (or horizontal) values come from
column 1 (#1) and the “y” (or vertical) values are in column 2. Once these values
have been read into arrays within GIRAPHE, we indicate that we want a solid line
drawn connecting these data points. Note that while the last data point (25, 1250)
is not plotted, the line extending to that data point is drawn until clipped by the
edge of the defined axes.

2.2 Example 2 — Expression Evaluator with Data File

The expression evaluator provides three additional capabilities to GIRAPHE.

5

Plot of Temperature vs Time

1200 LR L ¥ l v L v Ll T L v "TT T i L] L

1100

1000

Temperature (Celsius)

900 R VR SR (N S WY S SHN (NN W VS SHY SH I S S

5 10 15 20
Time (minutes)

Figure 1: Plot produced for examplel.

e The ability to refer to columns in the data file by name rather than by number.
This increases ease of use, as well as documents what the values in the data
file actually represent.

o The ability to manipulate the data from the file before plotting.

e The ability to “filter” data so that only those points meeting some criterion
are used in the plot.

For instance, suppose we wanted to plot the temperature in degrees Kelvin, but
only for times between 5 and 15 seconds (on the same axes as before). We label the
columns in the data file, so that the file ezample®.gdf looks like:

.column time temp
.remark temperatures are in degrees celsius

0 925
3 960
10 980
16 1025
20 1100
25 1200

We modify the command file as below:

Title Plot of Temperature vs Time

Linear xmin=0 xmax=20 ymin=1100 ymax=1400

XLabel Time (minutes)

YLabel Temperature (Kelvin)

Read File=example2.gdf xexp=time yexp=temp+273.15

+ filter=time>=b&&time<=15
Plot Line=dashed Symbol=circle
End

Plot of Temperature vs Time

1400 L) L) v] LS ¥ ¥ 7 r LR LS LS l Ll L Ld L
I)
- i]
[
E 1300'— "oo -
e - .
° i el 1
§ - '—”" T
s - o- 4
£ -
" i 1
[w
’- -
1100 NN SR YA VA N R T SN NN (T NN NN UH S A Y T

S 20

10
Time (minutes)
Figure 2: Plot produced for example 2.

The results of these command and data files are shown in figure 2. Here, we see
that using xexp=time specifies indirectly that the first column of the file contains
the x values, and yexp=temp+273.15 causes the y value to be the second column
added to the constant 273.15. In the continuation of the “read” statement (the “+”
at the start of the next line indicates the continuation), we use a filter to pick out
only those points where the time is between 5 and 15 seconds. In this example,
we also request an additional output for the data. Here, each of the specific data
points are drawn with a circle as the “symbol”, and the points are connected with
a dashed line.

2.3 Example 3 — Multiple Axes and Data Files

Sometimes the data one wishes to plot is not all contained within a single data file.
One often also finds it useful to compare two different sets of values as a function
of a third. This example illustrates both the use of an additional data file and
multiple axes for data comparison. In this example, we also introduce the “Key”
and “Legend” statements.

In addition to the data file of example2 (ezample2.gdf), we now add another
data file, ezample8.gdf , appearing as:

.column time resistance

0 45.6
5 42.3
10 40.0
16 35.7
20 20.7
25 12.7

We modify the command file as below:

Title Temperature and Sheet Resistance vs Time
Comment --- Set up axes and labels

Linear xmin=0 xmax=20 ymin=900 ymax=1200 ydelta=100 yfreq=2
YLabel Temperature (Celsius)

XLabel Time (minutes)

Axis Right min=10 max=50

Label right Text="Sheet Resistance (Ohms/square)"
Key upper right

Comment -- Resistance vs Time

Read File=example3.gdf xexp=time yexp=resistance
Legend Resistance

Plot Line=solid Symbol=square

Comment -- Temp ve Time

Use yaxis=left

Read File=example2.gdf xexps=time yexp=temp
Legend Temperature

Plot Line=dashed Symbol=circle

End

The results of this command file are shown in figure 3. The “Key” and “Legend”
statements provide a mechanism for labeling individual lines drawn on the plot. The
“Key” statement indicates that the key is to be placed in the upper right corner of
the plot.

The first line plotted is based on the new data for resistance versus time. By
default, the axes defined in the previous “Axis” statment are used, so that “x” will

8

Temperature and Sheet Resistance vs Time

1200 T v L] 'j L4 LR 'T L4 L v 'j L4 v L] A J 50

o—e—e Resistance
o-o--0 Temperature

1100

1000

Temperature (Celsius)
Sheet Resistance (Ohms/square)

900 PR T WU N AT S ST U U S VT U S S T S G 10
15 20

10
Time (minutes)
Figure 3: Plot produced for example 3.

be along the bottom (time), and “y” will be along the right axis (sheet resistance).
The first “Legend” statement causes the specified text to be displayed in the key.
Subsequent “Plot” statements, in addition to drawing data curves, will now also
draw a line next to the legend text to complete the key entry. :

To plot the second line, we want to switch the set of axes we are using. Here, we
want to plot the temperature as the “y” value, and to use the tick marks along the
left side. The “Use” statement associates the logical “x” and “y” with previously
defined axes; in this case, we switch “y” to use the left axis.

Note also that we modified the appearance of the left tick marks slightly. Here,
we specified tic=100, so that a major tick is placed every 100 units along the
axis. We also use ticfreq=2 so that we divide each major tic area into 2 regions,
separated by minor tick marks.

2.4 Example 4 — Families of Data

Often one wants to plot several related curves. For example, we may want to plot
several concentration versus depth curves, all parameterized by time. For example,
suppose we have concentration versus depth data for three times: 0, 1200, and 4800
seconds. The concentrations are in inverse cubic centimeters (cm~?) and the depths
in centimeters (cm). We express this in the data file by using “.par” statements to

9

declare a parameter and “.set” statements to set the parameter value. The data file
ezamplef.gdf looks like:

.rem Times are in seconds, depths in cm, conc in cm**-3
.rem Define time as a parameter
.par time

.rem Define the first column as "depth" and the second as "conc"
.col depth conc

.rem Set the time for the first curve to be O sec.
.set time=0.0

0.0e-4 le+1b

1.0e-4 1le+1}d

2.0e-4 le+1b

3.0e-4 le+1b

4.0e-4 le+ib

5.0e-4 1e+1}b

.rem Set the time for the second curve to be 1200 sec.
.set time=1200.0

0.0e-4 1e+19

1.0e~4 1.67383e+18

2.0e-4 4.77727e+16

3.0e-4 1.22088e+15

4.0e-4 1.00016e+15

5.0e-4 le+lb

.rem Set the time for the third curve to be 4800 sec.
.set time=4800.0

0.0e-4 le+19

1.0e-4 4.795b52e+18

2.0e-4 1.57383e+18

3.0e-4 3.3991be+17

4.0e-4 4.77727e+16

5.0e-4 5.06911e+3b

.rem This is the end of the file
.end
The command file, ezampled.grp we will use to plot this data is shown below:

Title Concentration vs. Depth
Title Infinite Source Diffusion

10

XLabel Depth (Microns)

YLabel Concentration (cm**-3)

Semilog xmin=0.0 xmax=5.0 ymin=0.beldb ymax=1el9

Key upper right

Comment Data file is in sec. and cm, we want min. and um.

Read file=exampled.gdf Family=time/60.0 xexp=depth*ied yexp=conc
Legend Time = $#family$ min.

Plot line=solid color=foreground symbol=circle:square:triangle
End

Concentration vs. Depth
Infinite Source Diffusion

¥ 1 J “ﬁ—lf L L L l T ¥ 1T 7 I—' L) L L} l LR S T ¥
o—e—o Time =0 min.
o—e—o Time =20 min.
—a—a Time = 80 min.
1E18
& F
: R
3
~ 1E17
5 3
g L
c
] 1E16}-
c -
° -
O S
1E15r — —e
¥ - LIJ 2 2 s 2 J 2 2 2 J;lgl; 24 Ll I S T 1 .
0 4 5

2 3
Depth (Microns)
Figure 4: Plot produced in Example 4

The results of this command file are shown in Fig. 4. The “SemiLog” statement
gives semi-logarithmic axes, i.e., a linear horizontal (or “x”) axis and a logarithmic
vertical (or “y”) axis. A “LogLog” statement would have given two logarithmic
axes.

The “Family” keyword in the “Read” statement tells GIRAPHE to produce a
separate curve for each different “Family” value. Note that in the data file the
times are in seconds and the depths are in centimeters. On the plot, however, the
times are in minutes and the depths in microns. This is done by giving expressions
as values for the “xexp” and “Family” keywords. The “xexp=depth*1e4” parameter

11

in the “Read” statement changes the depth from centimeters to microns and the
“Family=time/60.0” keyword value changes the time from seconds to minutes.

The “Legend” statement in this example produces a slightly different legend for
each curve in the family. The text between dollar signs ($) is not displayed as given
but is first evaluated and then displayed. (If you actually want a dollar sign, "$$"
will output a single dollar sign.) For the “Legend” statement the value of the special
variable #family is the parameter of the current curve. There the text $#family$
in the “Legend” statement is successively replaced by “0.0”, “20.0”, and “80.0.” All
statements that put text on the plot (the “Label”, “XLabel”, “YLabel”, “Title”,
and “Legend” statements) can access the expression evaluator in this way. Just as
we used one “Legend” statement for all three curves, we also use only one “Plot”
statement for all three curves in this example. The value of the “Symbol” keyword
in the “Plot” statement above is circle:square:triangle. This specifies that a
circle, square, and triangle for each successive family plot are to be used as the
plot symbol, where the colons are used to separate the successive values. If there
are more curves than values we begin again at the beginning. This technique may
also be used with the “Line”, and “Fill” keywords. For example if we had specified
“Line=soclid:dashed” the first and third curves would have been plotted with a
solid line and the second with a dashed line.

2.5 Other Examples

The examples in this section are available on-line for examination and test use
with GIRAPHE. In addition to these, a number of additional test and example
command files are usually available in the directory /cad/src/giraphe3/examples.
Illustrating various features of GIRAPHE, these files include and demonstrate:

auto.grp The axis autoscale feature.
bargraph.grp Bargraph plot option.
contour.grp Generation of contour plots.
iso.grp Isometric scaling of axis limits.
key.grp Use of keys and legends.
label.grp Axis labeling (i.e., with days of the week).
peacock.grp Tests color generation.
set.grp Tests expression evaluator.
12

3 Running the program

GIRAPHE follows the Unix™ convention for command invocation. The arguments
to the GIRAPHE command are separated by spaces. Options are preceded by dashes
(“”). Certain options use the argument following the option (unless it is another
option). For example, the sequence “-f blue” sets the foreground to the color blue.
A synopsis of the GIRAPHE command as appears below is output when GIRAPHE is
invoked with no arguments, or when invoked with an invalid option. In this usage
summary, square brackets (“[|”) denote optional arguments. For additional on-line
documentation, consult the man page for “giraphe3”.

giraphe3 [giraphe-command-file] [-t mfb-device-type]
[-d device-name] [-q [queue-name]] -0 [output-file])
[-b background-color] [-f foreground-color|

1 [log-file]} [-i] [-w] [-s] [-+],

The command-file (normally the first parameter of the GIRAPHE command) is
the name of the GIRAPHE command file to be used (with an extension of “.grp”
assumed). The command file provides information about the axes, titles, and how
to find, manipulate, and present the actual data. The command file may direct
GIRAPHE to read from several different files, each containing raw data points.
Complete descriptions of the GIRAPHE command and data file formats appears
in sections 4 and 5.

At most one command file may be given. If no command file is specified Gi-
RAPHE will use standard snput rather than a command file as the source of state-
ments to execute. The program can therefore be used as a filter or run as an
interactive “shell”. (The -+ option described below is recommended for interactive
use).

3.1 Output

GIRAPHE needs to know two things at invocation before it can produce graphical
output. First, it needs to know the destination of the graphics output. Secondly, it
needs to know what type of device is receiving the output in order to generate the
correct graphics commands.

3.1.1 Output Destination

The destination of the GIRAPHE output may be selected by using one of the -d, -o,
or -q options. The -0 option is used to direct output to a file and specifies only the
tmmediate and not the ultimate destination of the output. If an argument (which is
not another dashed option) immediately follows the -0 option, then the output file
will have that as the file name. If the -0 option has no argument, the name of the

13

output file will be the name of the command file, with the device type replacing the
extension on the command file name. For instance, “giraphe3 foo.grp -t ps4 -o -s”
will result in output to the file foo.ps{.

The -q and -d options are used to specify the ultimate destination of the output.
The -d option is used to direct output directly to a device that will actually display
the GIRAPHE plot. Under the X window system (using the “X” device type) the
output will directed to the named display (i.e., “-0 garbo:0”). Note that the -o and
-d options are incompatible.

The -q option instructs GIRAPHE to send the output to the specified queue on
plot completion. The GIRAPHE output is first placed in a file. The -0 option can
be used to set the name of the file used; if omitted, a temporary file is used and
will be deleted once the file has been queued to the output device successfully. If a
queue name is not given, the output will be queued to the default GIRAPHE queue
(site dependent). Otherwise the queue name will be used for the “-P” option of the
“lpr” command under Unix™.,

If none of the above output directing options are specified, output will be di-
rected to standard output, unless the “X” device type has been specified. In this
case, the “DISPLAY” environment variable will be consulted to determine the de-
vice where the mfb emulation window will be opened. If the “DISPLAY™ variable
is not set, the -d must be used to specify the physical display device.

3.1.2 Output Device Type

The graphics display device type is specified with the -t option, followed by the
device type . This device type should be a valid mfb device type or the special
type “X” for use with the X Window System. If the device type is invalid, the
message “Unknown terminal type!” will be displayed and the program terminated.
Common mfb device types are shown in Table 1.

If the device type is not explicitly specified, GIRAPHE will attempt to figure
out the mfb device type from the ultimate destination of the graphics output (as
specified by the -q or -d option). For the -q option, the queue name will be used to
determine the device type. If output has been directed to a file (via the -o option)
GIRAPHE cannot determine the device type since the ultimate destination of the
file is unknown. If the destination has been specified by the -d option or is the
standard output, GIRAPHE will use the environment variable “MFBTERM?” (if set)
as the device type. Failing that the “DISPLAY” environment variable is checked,
and if set GIRAPHE will assume it is running under the X window system and use
the levice type “X”. Finally, GIRAPHE will consult the information the operating
gystemn stores about the terminal. If GIRAPHE cannot determine the mfb device
type, the error message “Unable to determine device type” will be displayed and
the program terminated.

14

a3

t25

he

ps

PP

Table I: Common mfb Device Types

VT241 terminal.
Tektronix 4125 terminal.

Creates an “mfb” emulation window. The user must specify the location of
this window with the mouse. Note that automatic refresh of this window does
not occur, so that moving, iconifying, or uncovering the window will result in
destruction of the plot.

HPGL (Hewlett Packard Graphics Language) file output.

PostScript format file output. The ps format will print in the lower half
of a page in a size appropriate for inclusion in a paper or report. Other
device types with similar results include: ps2 which will produce a full page
PostScript plot, and ps3 which produces a full page plot, with larger lines
and text. Type ps4 will generate a full horizontal rather than vertical page.

Unix plot(5) format file output. This file can then be passed through the stan-
dard Unix™™ plot filters. For instance, the “pp” file generated by GIRAPHE
can be displayed on an ascii display using “plot -tcrt file.pp”.

15

3.2 Colors

The background and foreground colors of the GIRAPHE plot are specified with
the -b and -f options respectively. The default is a white foreground on a black
background. GIRAPHE currently understands the following eight colors: “white”,
“black”, “red”, “blue”, “green”, “magenta”, “cyan”, and “yellow”. Note that if the
output device does not support software initialization of the color map (or this has
been suppressed by the -i option described below), or does not have eight separately
definable colors, then the actual color of the output may not be as desired. On
most hard copy devices, specifying the color “black™ will actually give the color
white and vice versa. (It is usually better, then, to use the strings “foreground”
and “background” rather than “white” and “black” when specifying colors inside
GIRAPHE command files.)

Normally, GIRAPHE will attempt to initialize the output device’s color map so
that it can use all eight colors listed above. It cannot, however, reset the color map
to its original state on completion. This leaves some terminals (especially VT241’s)
with particularly garish color schemes on completion. If the -i option is used, the
program will not initialize the color map and the colors already defined for the
device (if there are any) will be used instead.

3.3 Miscellaneous Options
3.3.1 Log File

The name of a log file for errors and verification (requested inside the GIRAPHE
command file} may be specified using the -1 option. If no argument is given to the
-1 option the log file name will be the command file name with the extension “.log”.
If -1 is not specified the program will output the log information to the standard
output unless the graphics output is already directed there. In this case the log
information output will be suppressed.

3.3.2 Silent Output

On startup GIRAPHE will write the version number of the program, where the
graphics output is going, and other information about files used to standard output.
The -8 option will force GIRAPHE to start silently with only graphics output written
to standard output (if any). This is particularly useful when using GIRAPHE as a
filter or running GIRAPHE as a background job.

3.3.3 Termination Wait

The -w option will cause GIRAPHE to wait for user response before terminating.
This is particularly useful on devices that clear the screen as result of leaving graph-
ics mode under mfb. If the graphics device has a pointing device, the plot will remain

16

until the user types a point (or hits a key) before terminating. If no pointing device
is available, the program will wait for the user to enter the end of file character
(ctrl-D under Unix™™). Under the X window system (device type “X”) the -w
option is always in effect since the mfb window will be destroyed on termination of
GIRAPHE.

3.3.4 Command Continuation

-+ Indicates that command lines may not be continued using a “+” character as
the first character on a line. Normally, a “+” as the first character on a command
line causes that command line to be a continuation of the previous textual line.
This means, however, that the program must wait until the next line is available
before executing the current one to see if the next line is a continuation of the
first. When running GIRAPHE as an interactive shell this is undesirable, and the -+
option should be used. Note that lines may still be continued by using a backslash
(“\”) as the final character in a line.

3.4 Common Mistakes

The error messages produced by GIRAPHE are often a bit cryptic, and usually result
from errors in the command or data files. Some of the more common errors are
mentioned below.

o Leading decimal: Remember that the period (or decimal point) as the first
character on a line in the data file introduces a data file directive (such as
“column”). A common mistake, then, is to start a number that is less than
one with a decimal (“.15”). The correct usage is either to use a leading zero
(“0.157), or to include at least one space or tab before the number begins.

o giraphe rather than giraphe$: The previous version of the program, GIRAPHE
V2, is still in place on some systems. The version discussed in this manual
in invoked with “giraphe3”, while the previous version (retained for those
poor users who have not upgraded) is invoked with “giraphe”. If you run the
program and a large number of syntax errors result, you might check that you
have not run the wrong program.

e Spaces in ezpression: GIRAPHE uses spaces to break up the keyworded ar-
guments in a command statement. A common error is to use a space when
specifying a long expression in an attempt to make the expression more read-
able. This can be done, but the entire expression must then be enclosed by
quotations ("), so that the space is included as part of the argument.

17

4 Command File Statements

The GIRAPHE command file consists of a sequence of statements, each statement
on a new line. The purpose of the GIRAPHE command file is to give the necessary
information (labeling, location of the data files, what axes to use, etc.) to generate
the plot. The actual data for the plot is contained in the GIRAPHE data file which is
described in the next section. Unless plus continuation has been disabled (by using
the -+ option described in the previous section) a statement may be continued to
the following line with a plus sign (“+”) as the first character of the continuation
line. At all times, a line may be continued by ending it with a backslash (“\”). The
immediately following line is then treated as a continuation.

GIRAPHE command file statements fall into four broad types: statements that
manipulate axes, display text, manipulate data, and miscellaneous statements. The
actual data for plotting is contained in the GIRAPHE data file described in Section 5.
In the following subsections each of these statement types is described in general,
followed by a detailed descriptions of individual commands.

Each description begins with a one or two line summary of what the state-
ment does. This is followed by a synopsis of the statement showing the statement
format. Because GIRAPHE is fully interpretive (i.e., each statement is executed
immediately), the order that statements appear in the GIRAPHE command file is
important. Constraints on each statement are given in the restrictions part of the
command description. The statement’s interaction with the evaluator is given next.
The command description concludes with a detailed discussion of the command’s
effects.

Each GIRAPHE command statement uses the rest of the command line (following
the statement name) to determine the arguments to the command statement. Some
commands (principally those that display text) simply use the rest of the command
line as the argument. This is indicated in the format synopsis below as “<string>”.
For example, the line

Title This is a title

will display “This is a title” as a title on the plot. Here embedded spaces do not
require special treatment. The majority of GIRAPHE command statements, how-
ever, take a number of named arguments to which values are assigned using a
“keyword equals value” syntax. That is, the name of the keyword is given, fol-
lowed by an equals sign (“="), followed by the value. The values may be boolean
(i.e. “true” or “false”), numeric, or a string of characters. In the format synop-
sis, this is represented by the name of the keyword, followed by an equals sign,
followed by a type specifier enclosed in angle brackets (< >). Boolean values are
represented by “<d>”, numeric by “<n>", and character strings by “<e¢>". Note
that the simple presence of the boolean argument in a statement indicates “true”,
so that “Label left” is equivalent to “Label left=true”. To set a boolean to

18

false an up-arrow (“~”) plus the name of the boolean may be used. For example,
“Label “left” is equivalent to “Label left=false”. The keyword-value pairs
themselves are separated by spaces or commas (“,”). To include a space or comma
inside a value, the entire value must be enclosed in double quotes (“*"). For exam-
ple, “Label text=word” and “Label text="with quotes"” are correct, whereas
“Label text=no quotes” will produce an error. The ordering of keywords within
a command statement is not important; “Axis left min=b max=10" and “Axis
max=10 min=5 left” produce identical results. Command arguments may be op-
tional (enclosed by “[|” in the format synopsis) or mandatory (not enclosed by
square brackets). Occasionally only one parameter of several may be chosen; these
“pick one” arguments are separated by “|”. Finally, the default value for each key-
word, if any, is shown in the format synopsis separated from the type specifier by a
colon (“:).

Parentheses are used for grouping in the format synopsis. For example, the
format fragment:

[(min=<n> max=<n>) | auto=<b:false>|

means that the “min” and “max” keywords take numeric values and the “auto”
keyword takes a boolean value. The square brackets enclosing all three keywords
indicate that all three are optional. These are also pick-one keywords, i.e., either
“auto” may be specified or “min” and “max” may be. Finally, we see that if “min”
is specified, “max” must also be.

4.1 Axes

GIRAPHE allows four separate axes to be defined. The “left” and “right” axes are
vertical axes and are displayed (if requested) on the left and right sides of the plot,
respectively. The horizontal (“top” and “bottom”) axes behave similarly. Three ba-
sic axis types are supported: linear (z), logarithmic (log,, z), and reciprocal (1/z).
For convenience in doing Arrhenius plots, four special reciprocal axes are provided
suitable for use with temperature data in Kelvins, Rankins, degrees Centigrade,
and degrees Fahrenheit. These axis types are summarized in Table 4.1.

Two basic statements are provided for axis handling in GIRAPHE. The Axis
statement defines the limits and type of an axis, as well as the way the axis will be
displayed on the plot. For example, an axis can be “omitted” (i.e., not displayed
on the plot), or left unnumbered. The Use statement associates the logical x-
and y-axes of the data with axes defined on the plot. This statement can be used
to plot data using the left axis for the x-axis and the top axis for the y-axis, for
instance. The are also four axis statements that serve as shorthand for specifying
certain common types of axes. The Linear, SemiLog, LogLog, and Arrhenius
statements give axes for linear, semi-log, log-log, and Arrhenius plots, respectively.
All of these statements, discussed in detail immediately below, must come after any
Title statements, and do not access the expression evaluator.

19

Table II: Summary of Axis Types

| Axis Type | Axis Mapping |
e

Linear z
Logarithmic logioz
Reciprocal 1/z
Arrhenius Kelvin 1000/z
Arrhenius Rankin 1000/z
Arrhenius Celsius 1000/ (z + 273.17)
Arrhenius Fahrenheit | 1000/(z + 459.7)

4.1.1 The AXIS statement

Summary: The Axis statement defines an axis and controls its appearance on
the plot.

Format: Axis [left=<b:false>] [right=<b:false>|
[top=<b:false>] [bottom=<b:false>|
[(min=<n> max=<n>) | auto=<b:false>]
[start=<n>] [delta=<n>] [freq=<n>]
[length=<n:0.015>] [factor=<n:2.0>|
[color=<n:foreground>|
[linear= | logarithmic= |
arrhenius= [celsius= | kelvin= |
fahrenheit= | rankin=<5>|
[omit=<b:false>] [frame=] [number=] [tick=]
[isotropic=< b:false>|

Restrictions: The Axis statement must occur after any Title statements and
before any Plot, Annotate, or Key statement. Automatic scaling
(the “auto” keyword) assumes that data has have been read in by
a previous Read statement.

Evaluator: No access to the expression evaluator through this statement.
Description:

The Axis statements defines axes along the top, bottom, left, or right side
of the plot, and immediately displays the defined axes on the plot. In order to
define an axis, the location, axis type, and axis limits are required. The location
is specified using the boolean keywords “left”, “right”, “top”, or “bottom”. Note
that several axes may be defined by a single Axis statement; each of these axes
will be identical except for location. The axis type may be specified using the

20

boolean keywords “linear”, “logarithmic”, or “reciprocal”. The reciprocal axis type
can be further qualified with the boolean keywords “kelvin®, “rankin”®, “celsius”,
or “fahrenheit” corresponding to the special temperature reciprocal axes. These
keywords correspond to the axis types in Table 4.1. If no axis type is given, the
axis type of the opposite axis (right or left, top or bottom) will be used. Axis limits
may be specified using the “min” and “max” keywords or the “auto” keyword. The
“min” and “max” keyword allow the user to specify the axis limits directly. The
value of the “min” keyword is the value of the left- or bottom-most limit of the
axis; this value is normally the minimum value of the axis. Likewise, the value of
the “max” keyword specifies the right- or top-most limit of the axis. The “auto”
keyword will cause GIRAPHE to set the limits of the axes based on the data read in
by the last Read statement. The limits are chosen so that all the data points will
be inside the axis limits. If no limits are specified, GIRAPHE will use the limits of
the opposite axis. If the opposite axis is a different axis type then GIRAPHE will
chose limits so that the mapped limits (the result of applying the mapping function)
on the two axes are the same. For example, the statements

Axis left log min=10.0 max=1eb
Axis right linear

will define the right-hand axis to be a linear axis with the bottom-most limit to be
1.0 and the top-most limit to be 5.0.

The rest of the keywords control the way the axis will be displayed on the plot.
The axis as displayed consists of three parts: the frame (the line running the length
of the axis), major and minor ticks, and the numbering at the major ticks. The
boolean keywords “frame”, “tick”, and “number” specify the presence or absence
of the corresponding part of the axis. The default value of the keyword “frame”,
“tick”, and “number” is “true”. That is, GIRAPHE will display the whole axis
(drawing the axis frame and tick marks and number major ticks) unless specifically
requested not to by setting the appropriate keyword “false”. If the boolean keyword
“omit” is specified, however, defaults for the these keywords is “false” and only those
parts of the axis that are explicitly requested are displayed. By default, the axis
will be displayed in the foreground color. This may be overridden using the “color”
keyword.

The position and appearance of the major and minor tick marks on the axis
are controlled using the “delta”, “freq”, “start”, “length”, and “factor” keywords.
The “start” keyword indicates the value to begin labeling as a major tick. The
“delta” keyword is the increment between major ticks. For logarithmic-type axes
this increment is a multiplicative increment. For all other types this increment
is additive. The “freq” keyword gives the number of minor tick spaces between
each major tick (i.e., freq=5 displays four minor ticks, dividing the region between
major ticks in five parts). The “length” keyword gives the length of the minor tick
as a fraction of the plot area on the screen; the major tick length is this length

21

multiplied by the value of the “factor” keyword. Under normal conditions none of
these keywords need be specified, the program places major and minor tick marks
based on the axis limits.

22

4.1.2 The USE statement

Summary: The Use statement associates the logical x- and y-axes with the
left, right, top, or bottom plot axes.

Format: Use [xaxis=<¢>] [yaxis=<e>]

Restrictions: The Use statement can associate a logical axis only with a previ-
ously defined plot axis.

Evaluator: No access to the expression evaluator through this statement.

Description:

By default, the x-axis for actual plotting is the most recently defined horizontal
(bottom or top) axis, and the y-axis is the most recently defined vertical (left or
right) axis. The keyword “xaxis” may have a value of either “left”, “bottom™,
“right”, or “top” and is used to associate the x-axis with one of the previously
defined plot axes. The “yaxis” keyword acts similarly for the y-axis. The x-axis may
be associated with a vertical axis and the y-axis with a horizontal axis. However,
the x- and y-axes may not both be associated with horizontal axes or both with
vertical axes.

23

4.1.3 The LINEAR statement

Summary: A shorthand for defining axes for a linear plot.

Format: Linear [xmin=<n:0.0>] [xmax=<n:100.0>]
[ymin=<n:0.0>| [ymax=<n:100.0>]
[xdelta=<n>| [ydelta=<n>]
[xfreq=<n>] [yfreq=<n>]
[xstart=<n>]| [ystart=<n>|
(length=<n:0.015>] [factor=<n:2.0>] [color=< ¢:fore>|
[omit=<b:false>] [frame=)
[number=] [tick=]
[isotropic=<b:false>] [auto=<b:false>]

Restrictions: The Linear statement must occur after any Title statements and
before any Plot, Annotate, or Key statement. Automatic scaling
(the “auto” keyword) assumes that data has have been read in by
a previous Read statement.

Evaluator: No access to the expression evaluator through this statement
Description:

This is a short hand statement for speciiying a linear plot (where both left and
bottom axes are linear). Here both the x (horizontal) and y (vertical) axis limits
must be specified. Note that a decreasing axis is possible, as in 1inear xmin=100
xmax=0. The isotropic parameter indicates that one unit in x is equal to one unit
in y, and that the limits of the axis will be scaled to give a one-to-one aspect ratio
on the display device. Other parameters are analogous to those in the more general
Axis statement. The Linear statement is equivalent to two Axis statements. The
following line, for example,

Linear xmin=20.0 xmax=40.0 ymin=5.0 ymax=95.0 ystart=10.0
is equivalent to the following two Axis statements:

Axis linear left min=5.0 max=95.0 start=10.0
Axis linear bottom min=20.0 max=40.0

24

4.1.4 The SEMILOG statement

Summary: A shorthand to define axes for a semi-log plot.

Format: SemiLog [xmin=<n:0.0>] [xmax=<n:100.0>)
[ymin=<n:0.0>] [ymax=<n:100.0>|
[xdelta=<n>| [ydelta=<n>|
[xfreq=<n>] [yfreq=<n>]
[xstart=<n>]| [ystart=<n>|
[length=<n:0.015>] [factor=<n:2.0>} [color=< ¢:fore>|
[omit=<b:false>] [frame=]
[number=<$>] [tick=]
[isotropic=<b:false>] [auto=<b:false>|

Restrictions: The SemiLog statement must occur after any Title statements and
before any Plot, Annotate, or Key statement. Automatic scaling
(the “auto” keyword) assumes that data has have been read in by
a previous Read statement.

Evaluator: No access to the expression evaluator through this statement.

Description:

This is a short hand statement for specifying a semi-logarithmic plot, where
the bottom axis is linear and the left axis is logarithmic. Other parameters are
analogous to those in the more general Axis statement. The SemiLog statement
is equivalent to two Axis statements. The following line, for example,

SemiLog xmin=-0.4 xmax=2.0 ymin=lel4 ymin=le2i xstart=0.0 xdelta=1.0
is equivalent to the following Axis statements.

Axis linear bottom min=-0.4 max=2.0 start=0.0 delta=1.0
Axis log left min=lel4 max=lel2

25

4.1.5 The LOGLOG statement

Summary: A shorthand for defining axes for a log-log plot.

Format: LogLog [xmin=<n:0.0>] [xmax=<n:100.0>]
[ymin=<n:0.0>] [ymax=<n:100.0>]
[xdelta=<n>| [ydelta=<n>]
[xfreq=<n>] [yfreq=<n>]
[xstart=<n>] [ystart=<n>|
[length=<n:0.015>] [factor=<n:2.0>| [color=<c:fore>|
[omit=<b:false>] [frame=]
[number=] [tick=]
[isotropic=<b:false>| [auto=< b:false>]

Restrictions: The LogLog statement must occur after any Title statements and
before any Plot, Annotate, or Key statement. Automatic scaling
(the “auto” keyword) assumes that data has have been read in by
a previous Read statement.

Evaluator: No access to the expression evaluator through this statement.

Description:

This is a short hand statement for specifying a logarithmic plot, where both the
left and bottom axes are logarithmic. The Loglog statement is equivalent to two
Axis statements. The following line, for example,

Linear xmin=0.1 xmax=100.0 ymin=0.1 ymax=100.0 isotropic
is equivalent to the following Axis statements:

Axis log left min=0.1 max=100.0 isotropic
Axis log bottom min=0.1 max=100.0 isotropic

26

4.1.6 The ARRHENIUS statement

Summary: A shorthand for defining axes for an Arrhenius plot. The temper-
ature may be given in units of Kelvin, Rankin, degrees Celsius, or
degrees Fahrenheit.

Format: Arrhenius {tmin=<n:900.0>] [tmax=<n:1200.0>|
[ymin=<n:1.0>] [ymax=<n:100.0>]
[tdelta=<n>] [ydelta=<n>|
[tfreq=<n>] [yfreq=<n>]
[tstart=<n>] [ystart=<n>]
[length=<n:0.015>] [factor=<n:2.0>]
[color=< c:fore>] [isotropic=<b:false>|
[auto=<b:false>]

[omit=< b:false>] [frame=]
[number=] [tick=]
[celsius= | kelvin= |
fahrenheit= | rankin=]

Restrictions: The Arrhenius statement must occur after any Title statements
and before any Plot, Annotate, or Key statement. Automatic .
scaling (the “auto” keyword) assumes that data has have been read
in by a previous Read statement.

Evaluator: No access to the expression evaluator through this statement.

Description:

The Arrhenius statement defines the plot axes for an Arrhenius plot. The
temperature axis is along the top with the logarithmic (or “y”) axis along the
left side. The bottom axis is linear and corresponds to 1000/T, where T, is the
absolute temperature. The units for the temperature scale may be specified as
Kelvin, Rankin, degrees Celsius, or degrees Fahrenheit. Note that one does not
specify the bottom (or “x-”) axis min and max, but rather than the limits of the
top or temperature-axis, tmin and tmax.

The Arrhenius statement is equivalent to three Axis statements followed by a
Use statement. The following line, for example,

Arrhenius centigrade tmin=900.0 tmax=1200.0 ymin=0.1 ymax=1000.0
+ tdelta=50.0

is equivalent to the following statements:

Axis left log min=0.1 max=100.0
Axis top arrhenius centigrade min=900.0 max=1200.0 delta=50.0

Axis bottom linear ‘
Use xaxis=top yaxis=left

27

4.2 Displaying Text

These statements are responsible for putting text on the plot. The Title statement
is used to display title lines on the plot. The Label statement is used to label
the plot axes. The XLabel and Ylabel statements are shorthand for labeling the
bottom and left axes respectively. The Annotate and Text statements are used
to display text within the area where data is plotted. Finally, plot keys can be
generated using the Key and Legend statements. For all these statements, any
text to be displayed that is enclosed by dollar signs (“$”) will be evaluated before
being displayed. For example, “$1.0+3.0/4.08%” will be displayed as “1.75".

4.2.1 The TITLE statement
Summary: The Title statement displays text centered at the top of the plot.
Format: Title [<string>]

Restrictions: The Title statement must occur before any axes are defined (via an
Axis, Linear, SemiLog, LogLog, or Arrhenius statement) and
before any labels are defined (via a Label, XLabel, or YLabel
statement).

Evaluator: Any text to be displayed surrounded by dollar signs ($) will be
evaluated before being displayed.

Description:

A title statement will display the title string centered at the top of the plot.
Each successive title statement will appear on sequential lines on the plot. Any
number of title lines are allowed;d, the plot area, however, shrinks to accomodate
each additional title line.

28

4.2.2 The LABEL statement

Summary: The Label statement labels an entire axis or a specific tick on an
already defined axis.

Format: Label [left=<b:false>] [right=<b:false>]
[bottom=< b:false>] [top=<b:false> |
[axis=<b:false> at=<n> [angle=<n:0>]]
[color=< ¢:foreground>| [text=<e>]

Restrictions: The Label statement must occur after any Title statement. If the
“axis” keyword is specified, then the position along the axis (“at=")
must also be specified, and the axis itself must have been previously
defined.

Evaluator: Any text to be displayed surrounded by dollar signs ($) will be
evaluated before being displayed.

Description:

The Label statement may be used to label one or more of the plot axes. The
boolean keywords “left”, “right”, “bottom”, and “top” are used to specify which
axes are to be labeled; several axes may be labeled using one Label statement.
The label text to be displayed is the value of the “text” keyword. The label text
must be enclosed in quotes if it has any spaces in it. The label will appear in the
foreground color unless specified with the “color” keyword. The label text usually
applies to an entire axis, and the label text will appear centered along the specified
axis.

The label text may, however, label only a specific tick on the axis. In this case,
the boolean keyword “axis” is specified and the tick which will be labeled is given
by the value of the “at” key word. The label text will appear on the axis in the place
normally occupied by the tick numbering. The text will be displayed horizontally
unless the “angle” keyword is used to specify a different angle. The following lines,
for example,

Axis bottom min=0 max=5 number=false
Label bottom axis at=2 color=red text=two
Label bottom axis at=4 color=red text=four

will generate an axis along the bottom with limits 0 and 5, but no numbers displayed
along the bottom of the axis (though tick marks are displayed). The text “two”
and “four” appears centered around the axis positions 2 and 4, respectively.

29

4.2.3 The XLABEL and YLABEL statements

Summary: Shorthand for specifying the text to appear below the bottom axis.
Format: XLabel <string>
Restrictions: The XLabel statement must occur after any Title statement.

Evaluator: Any text to be displayed surrounded by dollar signs (§) will be
evaluated before being displayed.

Description:

The XLabel statement will display its argument as label for the entire bottom
axis (the nominal x-axis). The string will be displayed in the foreground color. This
statement is equivalent to a Label statement for the bottom axis. For example,
the statement

XLabel Depth into Silicon (microns)
is equivalent to

Label bottom text="Depth into Silicon (microns)"

Summary: Shorthand for specifying the text to the left of the left vertical axis.
Format: YLabel <string>
Restrictions: The YLabel statement must occur after any Title statement.

Evaluator: Any text to be displayed surrounded by dollar signs (§) will be
evaluated before being displayed.

Description:

The YLabel statement will display its argument as the label for the entire left
axis (the nominal y-axis). The string will be displayed in the foreground color. This
statement is equivalent to a Label statement for the left axis. For example, the
statement

YLabel Arsenic Concentration (cm*-3)
is equivalent to

Label left text="Arsenic Concentration (cm~-3)"

30

4.2.4 The ANNOTATE and TEXT statement

Summary: The Annotate statement displays text within the area where the
data is plotted.

Format: Annotate x=<n> y=<n>
[angle=<n:0>] [color=<c:fore>) [text=<c>)

Restrictions: Both horizontal and vertical axes must be defined before the Key
statement.

Evaluator: Any text to be displayed surrounded by dollar signs ($) will be
evaluated before being displayed.

Description:

The Annotate statement displays text within the data plotting area. The “x”
and “y” keywords must be specified and are used to give the position where the text
is to begin (i.e., the lower left corner). The annotation will be displayed horizontally
(unless an angle, measured from the 12 O’clock position, is given by the “angle”
keyword) and in the foreground color (unless overridden by the “color” keyword).
Subsequent lines of the annotation are given in succeeding Text statements. The
position of each annotation line is such that the successive line will not overlap. The
“text” keyword itself is optional. If no text is specified by the Annotate statement,
the first line of the annotation will be given by the first subsequent Text statement.

Summary: The Text statement gives subsequent lines in a multi-line annota-
tion.

Format: Text [<string>]
Restrictions: Must occur after an Annotate statement.

Evaluator: Any text to be displayed surrounded by dollar signs ($) will be
evaluated before being displayed.

Description:

This statement gives subsequent lines in a multi-line annotation. The color and
angle are given in the most recent Annotation statement.

31

4.2.5 The KEY statement

Summary: The Key statement defines the location of the plot key.

Format: Key [x=<n>| [y=<n>]
[upper=<b:false> | lower=<b:false>]
[right=<b:false> | left=<b:false>]
[downward=] [color=<¢:fore>] [width=<n:16>)

Restrictions: Both horizontal and vertical axes must be defined before the An-
notate statement. The Key statement must precede any Legend
statements.

Evaluator: No access to the expression evaluator through this statement.

Description:

An identifying “legend” may be specified for each line to be plotted. The key
statement specifies where the key is located, the legend statement describes the text
to be displayed for the legend, and successive plot statements actually generate the
legend lines. The start “x” and “y” position (along the axes currently in effect)
may be explicitly specified, or the general location of the legend indicated using
the upper, lower, right, and left positional boolean arguments. By default, the
legend will appear in the center of the plot. Thus “Key left color=red” will cause
the legend to begin at center left, with the legend text in red. The location of
the legend determines the direction that the legend grows as additional entries are
made; the legend grows downward if center or upper justified, and upward if defined
to be a “lower” legend. This may be specifically set with the downward flag. The
legend will also be right, center, or left justified if pusitioned along the left edge,
center, or right edge respectively. The assumed width of legend text for justification
is 16 characters; this may be increased using the “width” keyword.

32

4.2.6 The LEGEND statement
Summary: The Legend statement gives the text to displayed within the key.

Format: Legend <string>

Restrictions: The Legend statement must occur after a Key statement and
Read statement and before the Plot statement that plots the curve
the legend is for.

Evaluator: Any text to be displayed surrounded by dollar signs ($) will be
evaluated before being displayed. For families of data the special
variable #family will be equal to the family value. For contour data
the special variable #contour will be equal to the contour value.

Description:

The text to appear with each legend statement. This text may include portions
to be passed to the expression evaluator, delimited between dollar signs. For ex-
ample, “Legend VGS = $#family$” will cause the family value during plotting to
be substituted in the legend line. A new legend is generated for each succeeding
plot statement (unless the “legend” keyword in the plot statement is set to false),
and uses the same characteristics (linestyle, symbols, and colors) as in the plot
statement.

33

4.3 Manipulating Data
4.3.1 The READ statement

Summary: The Read statement reads data into the program from a file.

Format: Read (file=<c¢> | stdin=<b:false> | comfile=<b:false>)
[xexp=<e:#1>] [yexp=<e:#2>]
[filter=<e¢>] [family=<e>]
[contour=<¢> [non_uniform=<b:false>]
zmin=<n> zmax=<n> [deltaz=<n>]
[zlog=< b:false>]|
[numpoints=<n:0>| format=<ec:gdf>]
[sort=<b:false>] [verify=<b:false>]

Restrictions: The Read statement may occur anywhere in the command file.

Evaluator: The “xexp”, “yexp”, “family”, and “contour” keywords all take
values that are expressions.

Description:

The read statement allows one to read numeric data from a specified file, from
the standard snput, or from the command file itself. The format of the data file as
well as the expression evaluator is described in sections 5 and 6 below. By default,
the x values will be taken from the first column and the y from the second column of
the data file. The verify flag will cause GIRAPHE to write to standard error (stderr)
the x and y values as they are read from the file. Optionally, the values may be
sorted (on the x values) after they are read in. GIRAPHE has a default limit on the
number of data points one may read in (currently 400 points); if one has more data
than this, the maximum number of points should be specified.

As the data is read in, it may be “filtered” through the expression evaluator.
Only those points satisfying the filter condition are stored in the x and y arrays of
values to be plotted. Each data point may also have a z value (or a “family” value)
associated with it. This is of use in the plotting of families of curves. For instance,
MOS current-voltage curves are usually parameterized in terms of the gate voltage.
A read statement of form “Read file=foo x=VDS y=ID family=VGS” will cause
distinct lines to be drawn each time the value of the family variable (VGS here)
changes.

GIRAPHE also reads data to be plotted using iso-value contours. In this case,
the column (or variable) in the datafile containing the z values is specified with the
“contour” keyword, along with the minimum and maximum contour values to be
plotted. The increment between contours may be specified (delta;); if the contour is
logarithmic this is a multiplicative increment, otherwise it is an additive increment.

34

4.3.2 The PLOT statement

Summary: The Plot statement plots data previously read in.

Format: Plot [symbol=<c¢>] [linestyle=<¢>] [fill=<¢>] [color=< e:next>]
[label=<¢>] [legend=<b:true>| [closed=< b:false>|
[curve=<b:false>] [polygon=< b:false>] [outline=< b:false>|
[order=<¢:symbol:color:fill:line>)

Restrictions: Both horizontal and vertical axes must be defined before the Plot
statement. Data must have been previously read in using a Read
statement.

Evaluator: No access to the expression evaluator.

Description:

Once the data has been generated using a read statement, it may be plotted
using one or more Plot statements. The data may be plotted as a set of isolated
symbols, as a curve, as a polygon, or any combination of these. The possible
symbols are “square”, “circle”, “triangle”, “box”, “bullet”, “wedge”, “plus”, and
“cross”, or any alphanumeric character. In the case of curves, the linestyle is solid
by default. The possible linestyles are “solid”, “dashed”, “dotted” and “ddotted”
(dash-dotted). In each of these, the word “next” may be used, so that the symbol,
color, linestyle, or fill patterns will be cycled through. Polygons may be outlined
in the current linestyle and color, with a specified fill pattern. Currently the only
well-defined fill pattern is “solid”. The color of the symbols, curves, or polygons
are specified with the color argument.

In the case of family or contour plots, successive lines can be plotted with dif-
ferent characteristics. In place of a single value to the symbol, linestyle, and color
arguments, multiple values may be specified, and are separated by colons (for exam-
ple symbol=box:wedge :bullet”). Since a large number of families are possible, the
characteristics of symbols, lines, and polygon fill colors are not stepped in unison.
Rather, each different symbol specified will be drawn first, then the color changed
and each symbol cycled through again. The order in which this cycling occurs may
be specified with the order parameter.

If a key and legend statement have been previously issued, a legend line will by
default be written for each new plot statement (or family curve within a single plot
statement). This legend may be suppreased by setting the “legend” keyword in the
plot statement to false.

35

4.3.3 The WRITE statement

Summary: The Write statement writes the internal data to a file. This file
may subsequently read in using a Read statement.

Format: Write (file=<¢> | stdout=<b:false>) [format=<ec:gdf>]
[xexp=<c:#x>] [yexp=<e:#ty>| [zexp=<c:#z>]
[xname=<¢>] [yname=<¢>] [zname=<¢>]

Restrictions: The Write statement must occur after a Read statement.

Evaluator: The values of the “xexp”, “yexp” and “zexp” keywords are expres-
sions that are evaluated by the expression evaluator.

Description:

Once data has been read in using the expression evaluator, as well as possibly
filtered or contoured, one may write the reduced data back out to a named file. The
X, ¥, and z value names may be specified (column names), as well as the x, y and z
values to be output.

36

4.4 Miscellaneous Statements
4.4.1 The COMMENT statement

Summary: Used for commenting the command file.
Format: Comment [<string>|

Restrictions: None.

Evaluator: No access to the expression evaluator.

Description:

The Comment statement is not executed, but allows for documentation of the
command file.

4.4.2 The SYNTAX statement

Summary: Generates a synopsis of the given statement’s syntax.
Format: Syntax <string>

Restrictions: None, although only useful when running GIRAPHE as an interactive
shell.

Evaluator: No access to the expression evaluator.

Description:

Causes the above syntax to be output for the specified syntax. While not as
comprehensive as online help, this does summarize the various parameters for the
requested statement.

4.4.3 The SET statement

Summary: Set data file parameter values from command file.
Format: Set [<string>]

Restrictions: None.

Evaluator: String is processed by the expression evaluator.

Description:

Allows one to set data file parameter values from the command file. See the
discussion of the expression evaluator in Section 6.

37

4.4.4 The INCLUDE statement

Summary: Reads data or command statements from another source.

Format: Include (File=<¢> | stdin=<b:false>) [pluscontinue=<b:true>|
[dataonly=<b:false>] {library=<b:false>]

Restrictions: None.
Evaluator: No access to the expression evaluator.

Description:

The include statement allows one to textually include, either from a file or
from the standard snput, additional command file statements. By default, these
statements may be continued with a “+” on succeeding lines. The dataonly flag
indicates that the ‘nformation will not have giraphe$ statements, but only data.

4.4.5 The END statement

Summary: Terminates the program.

Format: End <string>

Restrictions: None.

Evaluator: No access to the expressior evaluator.

Description:

Completes drawing of any pending data or axes, and terminates the program.
The string argument to end is used only for documentation.

38

5 Data Format

GIRAPHE is fundamentally a scientific data plotting program; the format of the
data is described in this section. The data may be provided to the program in
three ways: as a separate data file, as part of the GIRAPHE command file, or from
the standard input. The data format is identical in these three cases (although a
terminating “.end” may be omitted from a separate data file).

5.1 Basic format

The basic format is tabular in nature. Each distinct data point in the GIRAPHE data
format (sometimes referred to as “gdf”) is formed by a row of numbers in the data
file. The values in each row are separated into one or more columns of numbers;
each number may take any of the usual printed representation of floating point
numbers, with one important exception. No row should have as its first column
a number that begins with a decimal point (i.e. “.49”); the period indicates that
a data file directive is to follow, so that the number should be represented with a
preceding zero (i.e. “0.49”) instead. The data columns may be referred to in the
GIRAPHE command file by names such as “#1” or “#3”. Examples of the use of
the GIRAPHE data format can be found in Section 2.

5.2 Data directives

In its simplest form, then, a GIRAPHE data file consists solely of the z and y values
to be plotted. A number of data directives are provided to simplify specification
and use of data. Each of these begin with a period in the first position on a line,
and are described below.

5.2.1 .column

Columns may be labeled with the “.column” directive, followed on the same line by
the names of the successive columns in the data. Once labeled, the values in these
columns may be referred to by name in the GIRAPHE command file when specifying
the z, y, and family values to be plotted.

5.2.2 .parameter

While the “.column” directive provides a way of associating a name with a col-
umn, the “.parameter” and “.set” directives enable one to define additional names
and values without specifying numeric values in the columns. The “parameter”
directive, followed by a list of names on the same line, defines these names.

39

5.2.3 .set

After a “.parameter” definition, subsequent “.set” directives assign values to these
parameters. Each “.set” should be followed by one or more <parameter=value>
pairs. The “.set” directive may appear anywhere in the data file, and sets the value
of the parameter for the rest of the data file or until superseded by another “set”.
For instance, the parameter “vt” is declared with “.par vt”, and can be set anywhere
later in the file with “.set vt=1.45", and still later by “.set vt=1.55". The use of a
parameter is equivalent to a column by the parameter name with all entries equal
to the set value.

5.2.4 .remark

Lines in the data file beginning with “.remark” are ignored by GIRAPHE. These
remarks, combined with column specifications, provide documentation about the
data itself. Lines with nothing but white space on them are ignored by GIRAPHE,
and can be used in the data file.

5.2.5 .on and .off

The “.off” directive causes subsequent data lines to be ignored by GIRAPHE until a
line beginning with “.on” is encountered, at which time GIRAPHE resumes process-
ing lines as data. Thus, sections of the data file that are not to be interpreted by
GIRAPHE as data may be enclosed between lines beginning with “.off” and ending
with “.on”.

5.2.6 .end

The “.end” directive indicates the end of data. When data is coming from a ﬁle,.the
“.end” may be omitted, as the end of the file implicitly defines the end of the data.
When the data is interposed in the GIRAPHE command file itself, or is coming from
the standard input, the “.end” must be present so that GIRAPHE knows to return
to interpreting lines as GIRAPHE statements rather than data.

40

Table III: Mathematical Functions

| Function l Description |

abs Absolute value

acos Inverse cosine

asin Inverse sine

atan Inverse tangent

ceil Ceiling (nearest integer greater than or equal to number)
cos Cosine

cosh Hyperbolic cosine

cot Cotangent

erf Error function

erfc Complementary error function

exp e raised to power

exp10 10 raised to power

floor Floor (nearest integer less or equal to number)
log log base e

log10 log base 10

print Print value to stdout

sin Sine

sinh Hyperbolic sine

tan Tangent

tanh Hyperbolic tangent

6 Expression Evaluator

A powerful expression evaluator is included in GIRAPHE to make it easy to deal
with large amounts of data, as well as to perform some amount of manipulation
of raw data before plotting. The evaluator provides the usual infix operations,
including “+?, “-7, 7 “xm /7 “yx” or “~” for exponentiation, and “%" for
modulo. In addition, a number of predefined mathematical functions are provided.
These functions, used as “log(x)”, are summarized in Table III. Finally, boolean
operations including “” (unary negation), “~=” (not equal), “<=”, “>=" “c>" "
ugn Yma” “pg™ “||”, and “=” are provided. These are supplemented by predefined
constants, as defined in Table IV.

The precedence of calculations using these operators is to perform operations
nested within parentheses first (from the inside toward the outside), followed by any
of the functions with parenthesized notations (such as “atan(x)”). Precedence then
goes to the other unary operators (“-”, “+”, and “~”), followed by exponentiation,
then successively binary arithmetic operators (“*” and “/”, then “+” and “-"),

41

Table 1V: Predefined Constants

Constant Value Description

#pi 3.14159265358979323846

#e 2.71828182845904523536

#gamma | 0.57721566490153286061 | Euler’s constant
#phi 1.61803398874989484820 | Golden ratio

#q 1.60219E-19 electric charge

#h 6.62620E-34 Plank’s constant
#hbar 1.05459E-34 hbar

#NAvg 6.02217E23 Avogadro’s number
#me 9.10956E-31 electron mass
#kboltz 1.38062E-23 Boltzman constant
*c 2.997925E08 speed of light
#true 1.0 true

#false 0.0 false

arithmetic comparisons (“<=", “>=" “<>” “>” and “<”), conditional tests (“~="
and “=="), the boolean “and” operator (“&&”), the boolean “or” (“||”), and finally
assignment (“=").

The expression evaluator is available for two kinds of use in GIRAPHE. The first
of these is in calculating or extracting values to be put into the z, y, and 2 (or
family) arrays for plotting. Here, one typically reads some column or combination
of columns, and performs numerical calculations before assignment to the “xexp”,
“yexp”, or “family” values in the read statement. For instance, the argument
“xexp=#1+log(vt*1.1)” would assign z with the value of column one added to the
log of one plus whatever value (either a parameter or a column) vt holds.

The second primary use is to “filter” the specified data. For instance, one may
only want to plot points where vt is between 1 and 2. In this case, the boolean
parameters are used: “filter=vt>=1&kvt<=2",

The expression evaluator is also invoked by any GIRAPHE statements that put
text on the plot, allowing calculation and presentation of numeric (or resolution of
named variable) values. The statements where this is possible include the “Label”,
“XLabel”, “YLabel”, “Title”, “Legend”, and “Annotate” statements.

42

Index

-b option 16
-d option 13
-f option 16
-1 option 16
-0 option 13
-q option 13
-w option 16
 keyword type 18
<¢> keyword type 18
<n> keyword type 18
<string>keyword type 18
acknowledgments 4
Annotate statement 31
Arrhenius statement 27
auto 12
axes 19
Axis statement, 20
labeling, 12
multiple, 8
switching, 9
background color 16
bargraph 12
boolean
keyword values, 19
operations, 41
capabilities 3
color 16
initialization, 16
.column 39
command
arguments, 18
continuation, 17, 18
file, 5, 13, 18
keywords, 18
statements, 18
Comment statement 37
constants 42
contours 12
Data directives 39

43

data file 5
format, 39
destination device 13
device 14
output, 14
type, 14
display variable 14
.end 40
End statement 38
errors 17
evaluator 41
errors, 17
example, 5
expressions, 17
examples 3-11
additional, 12
false 19
families 11, 9
file output 13
filter 42
foreground color 16
genealogy 4
HPGL device type 15
Include statement 38
interactive 17
introduction 3
invocation, GIRAPHE 13
key 8
Key statement 32
keywords, command 18
Label statement 29
Legend statement 33
legends 8, 12
Linear statement 24
LogLog statement 26
log file 16
man pages 13
math functions 41
mfb 4

device types, 14
mistakes 17
.off 40
.on 40
options 13
order, keyword 19
output device type 14
overview 4
.parameter 39
plot(5) device type 15
Plot statement 35
Postscript device type 15
precedence, operator 41
queue output 14
Read statement 34
.remark 40
SemiLog statement 25
.set 40
Set statement 37
shell 17
silent output 16
statement synopsis 18
Syntax statement 37
temperature axes 6
termination 16
Text statement 31
Title statement 28
Use statement 23
version number 4, 16
VT241 device type 15
Write statement 36
X device type 15
XLabel statement 30
YLabel statement 30

44

GIRAPHE3(CAD) UNIX Programmer's Manual GIRAPHE3(CAD)

NAME
giraphe3 ~ scientific plotting program

SYNOPSIS
giraphe3 [giraphe3-inputfile] < -~ t mfb-devicetype > [- b background-color] [-f
foreground-color] [- d device-name] [- | log-file] [- 0 < output-file >] [- q queue-name] |
-il{-w][-+][-5]

DESCRIPTION
Giraphe3 generates scientific plots using an input command file or direct user input and any
number of data files. Giraphe3 produces output for a number of different graphics devices,
including both graphics terminals and hard copy devices. The giraphe3 command file (normally
the first parameter of the giraphe3 command) defines the characteristics of the desired plot, as
well as specifies the data to be plotted. The format of both the giraphe3 input file and the
giraphe3 data files are discussed below.

If the command file argument is omitted and the - option is used, giraphe3 will use standard
input rather than a command file as the source of statements to execute. The program can be
also be run as an interactive "shell" (where the ~ + option is recommended for interactive
use). Giraphe3 statements allow one to incorporate data directly into the command file, or to
read the standard input for data. The program can thus serve as a scientific plotting filter
between data generating programs and display devices.

Giraphe3 is usually invoked with the - t option, followed by the device type. If the - t option is
omitted, giraphe3 will try to figure out the mfb device type by itself. If the - q has been
specified, it uses the queue name to figure out the device type. If ~ q is not specified, giraphe3
will use the environment variable "MFBTERM" if set. Failing that, the "DISPLAY" environ-
ment variable is checked, and if set giraphe3 will use "X" as the display type. In specifying the
device type explicity with - t, the device type must be a valid mfb device type; under the X
Window System, a window may be created with the "X" device type. The DISPLAY environ-
ment variable is used to determine which physical display device to use. Sample device names
include

d3 VT241 terminal.
t25 Tektronix 4125 terminal.

X Creates an "mfb" emulation window. The user must specify the location of this window
with the mouse. Note that automatic refresh of this window does NOT occur, so that
moving, iconifying, or uncovering the window will result in destruction of the plot.

he HPGL (Hewlett Packard Graphics l.anguage) file output.

ps PostScript format file output. The ps format will print in the lower half of a page in a
size appropriate for inclusion in a paper or report. Other device names with similar
results include ps2 which will produce a full page PostScript plot, and ps3 which pro-
duces a full page plot, with larger lines and text. ps4 will generate a full horizontal
rather than vertical page.

PP Unix plot(5) format file output. This file can then be passed through the standard unix
plot filters. For instance, the "pp” file generated by giraphe3 can be displayed on an ascii
display using "plot -tert file.pp”.

The other options are used as follows:

-d Changes the device where the plot is to be displayed. By default, the plot is written to
the device where the command is generated. The - d option can be used to redirect
output to another device. Under the X window system, the plot will be directed to the
named display (i.e. garbo:0).

4th Berkeley Distribution February 24, 1987 1

. GIRAPHE3 (CAD) UNIX Programmer's Manual GIRAPHE3(CAD)

-b Sets the background color to that specified. Default is black, except for file output
which will use white as the background color.

-f Sets the foreground color to that specified. Default is white, except for file output
which which will use biack as the foreground color.

-0 Specifies that output is to go to the specified file rather than to standard output. By
default, the name of the output file will be the name of the command file, with the
device type replacing the extension on the command file name. For instance, "foo.grp
-t ps4 -0" will produce "foo.ps4” as output. If an argument (which is not another
dashed option) immediately follows the — o option, then the output file will have that
as the file name.

- w If the graphics device has a pointing device, the plot will remain until the user types a
point (or hits a key) before terminating. If no graphics device is available, waits for the
user to enter ctrl-D. By default the ~ w option is in effect for X window display.

-q The hardcopy output file will be queued to the specified printer by Giraphe3 upon com-
pletion.

-s Giraphe3 performs silently. The user is not told the version number or when the plot is
done; normally this information is directed to the standard output. Error messages are
still written to the standard output.

- Reads command statements from standard input rather than from s specified file.

-+ Reads command statements from standard input rather than from s specified file; but
' without command line continuations. Normally, a "+ " as the first character on a com-
mand line causes that command line to be considered a continuation of the previous
textual line. When running Giraphe3 as an interactive shell, however, one normally
wants a command to be executed immediately, necessitating the — + option.

- Inhibits the initizialization of the color map. If - i is used, the colors already defined
for the device (if there are any) will be used instead. Particularly useful when generat-
ing output for VT241’s.

-1 A log file of errors (or verification output if so requested inside the giraphe3 input file).

COMMAND FILE FORMAT
The giraphe3 command file consists of a sequence of statements, each statement on a new line.
A statement may be continued to the following line with a "+ " as the first character of the con-
tinuation line. Some of the statements must be issued before others; these are mentioned for
each of the statements below.

Each statement may take a number of named arguments to which values may be assigned.
These arguments may be mandatory (enclosed by "()™) or optional (enclosed by "{]"). Occa-
sionally only one parameter of several may be chosen (these "pick one” arguments are separated
by "I). The arguments may have values of several types. Suring arguments are indicated by
< s> , and may have imbedded spaces. Character arguments are indicated below by < ¢> , and
must not have imbedded white space (since white space separates arguments in the statement),
unless the entire value is enclosed in double quotes. Numeric values are indicated by < n> .
Boolean values are denoted below with a < b> type. Note that the simple presence of the
boolean argument in a statement indicates "true”, so that "Label left” is equivalent to "Label
lefi= true”. To sct a boolean tn false one may use the up-arrow, as in "Label “left”, or one may
use "Label lefi= false”. Finally the default values of each argument, if any is defined, are
' shown following the type specifier and a colon.

Title [<s>]

A title statement will display the title string centered at the top of the plot. Each

4th Berkeley Distribution February 24, 1987 2

D —

GIRAPHE3 (CAD) UNIX Programmers’s Manual GIRAPHE3(CAD)

successive title statement will appear on sequential lines on the plot. While any
number of title lines are allowed, all title statements must appear before the axes are
defined.

Comment
[<s>]

The comment statement is not executed, but allows for documentation of the command
file.

Axis [lefi= < b:false>] {right= < b:false>]
[top= < b:false>] [bottom= < b:false>]
((min= < n> max= < n>) lauto= < b:false>)
[start= < n>] [delta= < n>] [freq= < n>]
[length= < n:0.015>] [factor= < n:2.0>]
[color= < n:foreground>]
(linear= < b> llogarithmic= < b> |
(arrhenius= < b> [celsius= < b> lkelvin= < b> |
farenheit= < b> Irankin= < b>]))
[omit= < b:false>] [frame= < b>] [number= < b>] [tick= < b>]

The axis statement allows one to define a single axis along the top or bottom, or along
the left or right edge of the plot. One must either specify the minimum axis value
(actually the left-most or bottom-most value) and maximum (the right-most or top-
most) value, or indicate that the program is to determine these values. If one is to use
the automatic axis scaling, however, the axis statement must follow an earlier read
statement.

A number of parameters give control over the position and appearance of the major and
minor tick marks along the axis. The start parameter indicates the value to begin label-
ing as a major tick. The delta parameter is the increment between major ticks, and the
freq indicates how many minor tick spaces lic between each major tick. The length
parameter gives the length of the minor tick in percentage of the plot area on the
screen; the major tick length is this length multiplies by the factor parameter. For nor-
mal use, specification of the minimum and maximum axis values is sufficient; the pro-
gram is proficient at choosing major and minor tick marks. By default, the axis and tick
color will be the foreground color, this may be set with the color parameter. The tick
marks may be suppressed by setting the tick parameter to false, and setting the number
parameter false suppresses numbering of the axis.

The character of the axis must also be specified. The axis may be linear or logarithmic,
or may be an arrhenius scale (in celsius, kelvin, farenheit, or rankin). The axis may be
omitted altogether by setting omit to true. Setting the frame parameter true will cause
a box to be drawn around the entire plot. Note that one may specify different axes for
the top and bottom of the piot; if one does not specify one or the other, the axis and
tick marks will be redrawn on along the missing edge at the completion of the plot.

No title statements may follow any axis statement. Furthermore, all plot, key, and
annotate statements should follow the axes definitions.

Linear [xmin= < n:0.0>] [xmax= < n:100.0>]
[ymin= < n:0.0> } [ymax= < n:100.0>]
[xdelta= < n>] [ydelta= < n>]
[xfreqg= < n>] [yfreq= < n>]

4th Berkeley Distribution February 24, 1987 3

‘ GIRAPHE3 (CAD) UNIX Programmer’s Manual GIRAPHE3(CAD)

[xstart= < n>] [ystart= < n>]

[length= < n:0.015>] [factor= < n:2.0>]

[color= < c:fore>]

[omit= < b:false>] [frame= < b>] [number= < b> } [tick= < b>]
{isotropic= < b:false>]

This is a short hand statement for specifying a linear plot (both left and bottom axes
are linear). Here both the x (horizontal) and y (vertical) axis limits must be specified.
Note that a decreasing axis is possible, as is "linear xmin= 100 xmax= 0", The isotropic
parameter indicates that one unit in x is equal to one unit in y, and that the plot area
should be scaled to as to maintain a one-to-one aspect ratio. Other parameters are
identical to those in the more general axis statement.

SemiLog
Same parameters as for the Linear statement.

This is a short hand statement for specifying a semilog plot, where the x (horizontal)
axis is assumed to be linear, and the y (vertical) axis is assumed to be logarithmic.
Other parameters are identical to those in the more general axis statement.

Loglog
Same parameters as for the Linear statement.

This is a short hand statement for specifying a log-log plot, where both the x (horizon-
‘ tal) and y (vertical) axes are logarithmic. Other parameters are identical to those in the
more general axis statement.

Arrhenius
[tmin= < n:900.0>] [tmax= < n:1200.0>]
[ymin= < n:1.0>] [ymax= < n:100.0>]
[tdelta= < n>] {ydelta= < n>]
[tfreq= < n>] [yfreq= < n>]
[tstart= < n>] [ystart= < n>]
[length= < n:0.015>] [factor= < n:2.0>]
(color= < c:fore>]
[omit= < b:false>] [frame= < b>] [number= < b>] [tick= < b> }
[celsius= < b> lkelvin= < b> |

farenheit= < b> irankin= < b>]

{isotropic= < b:false>]

A set of arrhenius axes are defined, with the temperature along the bottom and the y
value along the side. The units for the temperature scale may be specified as celsius,
kelvin, farenheit, or rankin. Note that one does not specify the "x" axis min and max,
but rather the "temperature” tmin and tmax.

Use [xaxis= < ¢>] {yaxis= < ¢c>]

By default, the x axis for actual plotting is the horizontal bottom axis, and the y values
are defined along the vertical left axis. One may specify the x or y axes as "left”, "bot-

tom", "right”, or "top" to correspond previously defined axis values. This statement
must follow those axes definitions.

. Label! [left= < b:false>] [right= < b:false>]
{bottom= < b:false>] [top= < b:false>]
(axis at= < n> [angle= < n:0>]]
{color= < c:foreground>] [text= < ¢>]

4th Berkeley Distribution February 24, 1987 4

GIRAPHE3 (CAD) UNIX Programmer’s Manual GIRAPHE3(CAD)

The Label statement defines the text to appear along the left, bottom, right, or top axis.
The color of this text may be defined, by default the foreground color is used. The text
should be enclosed in quotes if it has any tabs or spaces in it; this text will appear cen-
tered below or outside the axis (and below the axis numbering).

In addition, one may specify text to appear along the axis in the position normally
occuppied by the axis numbering by using the axis argument. In this case, one must
specify the axis value (and optionally an angle) at which the text is to appear.

XLabel
< s>

Shorthand for specifying the text to appear below the x axis.

YLabel
< s> Shorthand for specifying the text to appear below the y axis.

Annotate
x= < n:1.0> y= < n:l.4e+ 04> [angle= < n:0>]
[sizehor= < n>] [sizever= < n>]
[color= < c:fore>] [text= < ¢>]

The annotate statement enables one to place text within the data plotting area itself.
One must specify the x and y position for the text to begin at, and may optionally pro-
vide an angle for the writing of the text. The color of the text may also be specified.
The sizehor and sizever arguments are not yet implemented. The text argument is
optional. Instead, one may use later Text statements to write text to the specified loca-
tion specified in the closest preceeding annotate statement. Successive text statements
will write incrementally offset annotations. Annotations must be preceded by the
definition of the axes.

Text [<s>]

See Annotate statement.

Read (file= < ¢> Istdin= < b:false> Icomfile= < b:false>)

(xexp= < c:# 1>] [yexp= < c:# 2>]

[verify= < b:false>] [filter= < ¢>]

(family= < ¢>] [sort= < b:false>]

[contour= < ¢> zmin= < n> zmax= < n> [deltaz= < n>]
[non_uniform= < b:false>] [zlog= < b:false>]
{cycle= < n:1>]]

{numpoints= < n:0>] [format= < c:gdf>]

The read statement allows one to read numeric data from a specified file, from the stan-
dard input, or from the command file itself. If the data is to come from the command
file, it must appear immediately following the read statement and before any other com-
mand file statements; note also that the data must end with ".end" in order for giraphe3
to return to executing statements rather than continue to read lines as data from the
command file. The format of the data file as well as the expression evaluator is is
described further below. By default, the x values will be taken from the first column
and the y from the second column of the data file. The verify flag will cause giraphe3
to write to stdout the x and y values as they are read from the file. Optionally, the
values may be sorted (on the x values) after they are read in. Giraphe3 has a default
limit on the number of data points one may read in (currently 400 points); if one has
more data than this, the maximum number of points should be specified.

4th Berkeley Distribution February 24, 1987 5

Plot

Key

. GIRAPHE3(CAD) UNIX Programmer’s Manual GIRAPHE3(CAD)

As the data is read in, it may be “filtered” through the expression evaluator. Only those
points satisfying the filter condition are stored in the x and y arrays of values 1o be plot-
ted. Each data point may also have a z value (or a "family" value) associated with it.
This is of use in the plotting of families of curves. For instance, MOS 1V curves are
usually parameterized in terms of the gate voltage. A read statement of form "read
file= foo x= VDS y= ID family= VGS" will cause distinct lines to be drawn each time
the value of the family variable (VGS here) changes.

Giraphe3 can also read data to be plotted using iso-value contours. In this case, the
column (or variable) in the datafile containing the z values is specified, along with the
minimum and maximum contour value to be plotted. The increment between contours
may also be specified; if the contour is logarthmic this is a multiplicative increment,
otherwise it is an additive increment. If the contour data does not form a rectilinear
array in x and y, the non_uniform flag may be set true, in which case giraphe3 will
interpolate random data points onto a uniform grid for contour plotting. This
non_uniform option has not yet been implemented.

[symbol= < ¢>]
[curve= < b:false>] [linestyle= < ¢>]
{polygon= < b:false>] [fill= < ¢>]
[closed= < b:false>] [outline= < b:false>]
[color= < c:next>] [order= < c:symbol:color:fill:line>]
[label= < c>] [legend= < b:true>]
[major= < b:false>] [minor= < b:false>]

Once the data has been generated using a read statement, it may be plotting using one
or more plot statements. The data may be plotted as isolated symbols, curves, or
polygons, or as any combination of these. The possible symbols are "square”, "circle”,
"triangle”, "box", "bullet”, "wedge”, "plus”, and “cross”, or any alphanumeric character.
In the case of curves, the linestyle is solid be default. The possible linestyles are "solid",
"dashed”, "dotted" and "ddotted” (dash-dotted). In each of these, the work "next” may
be used, so that the symbol, color, linestyle, or fill patterns will be cycled through. In
the case of polygons, the polyons may be outlined in the current linestyle and color,
with a specified fill pattern. Currently the only well defined fill pattern is "solid". The
color of the symbols, curves, or polygons are specified with the color argument.

In the case of family or contour plots, successive lines can be specified to be plotied
with different characteristics. In place of a single value to the symbol, linestyle, and
color arguments, a multiple number of values may be specified separated by colons (for
example "symbol= box:wedge:bullet™). Since a large number of families are possible,
the characteristics of symbols, lines, and polygon fill colors are not stepped in unison.
Rather, each different symbol specified will be drawn first, then the color changed and
each symbol cycled through again. The order in which this cycling occurs may be
modified with the order parameter.

If a key statement has been previously issued, a legend line will by default be written
for each new curve. This may be suppressed with by setting the legend boolean argu-
ment false.

[x=<n>] [y=<n>]

[upper= < b:false> {lower= < b:false>]
[right= < b:false> lleft= < b:false>]
{downward= < b>] [color= < c:fore>]
[width= < n:16>)

4th Berkeley Distribution February 24, 1987 6

GIRAPHE3 (CAD) UNIX Programmer’s Manual GIRAPHE3(CAD)

An identifying "legend” may be specified for each line to be plotied. The key statement
specified where the key is to located, the legend statement describes the text to be -
displayed for the legend, and successive plot statements actually generate the legend
lines. The start x and y position may be specified, or the general location of the legend
using the upper, lower, right, and left positional boolean arguments. By default, the
legend will appear in the center of the plot. Thus "Key left color= red” will cause the
legend to begin at center left, with the legend text in red. The location of the legend
determines the direction that the legend grows as additional entries are made; the
legend grows downward if center or upper justified, and upward if defined to be a
"lower" legend. This may be specifically set with the downward flag. The legend will
also be right, center, or left justified if positioned along the left edge, center, or right
edge respectively. The assumed width of legend text for justification is 16 characters:;
this may be modified if more is needed.

Legend < s>

The text to appear with each legend statement. This text may include portions to be
passed to the expression evaluator, delimited between dollar signs. For example,
"Legend VGS = $# family$" will cause the family value during plotting to be substi-
tuted in the legend line.

Set < s>

Allows one to set data file parameter values from the command file. See discussion of
the expression evaluator below.

Syntax < s>

Causes the above syntax to be output for the specified syntax. While not as
comprehensive as online help, this does summarize the various parameters for the
requested statement.

Write file= < ¢> [format= < c:gdf>]
[xexp= < c:# x>] [yexp= < c:# y>] [zexp= < c:# z>]
[xname= < ¢>] ([yname= < ¢>] [zname= < ¢>]

This statement has not been implemented yet. Once data has been read in using the
expression evaluator, as well as possibly filtered or contoured, one may write the
reduced data back out to a named file. The x, y, and z value names may be specified
(column names), as well as the x, y and z values to be output.

Include
(File= < ¢> Istdin= < b:false>) [PlusContinue= < b:true>]
[Dataonly= < b:false>] [Library= < b:false>]

The include statement allows one to textually include, either from a file or from the
standard input, additional command file statements. By default, these statements may
be continued with a "+ " on succeeding lines. The dataonly flag indicates that the infor-
mation will not have giraphe3 statements, but only data.

End < >

Terminates the program.

4th Berkeley Distribution February 24, 1987 7

GIRAPHE3 (CAD; UNIX Programmer’s Manual GIRAPHE3(CAD)

The giraphe3 syntax file used may be changed by setting a variable "Giraphe3Syntax" in the
environment.

DATA FILE FORMAT

The data file should contain data points (in ascii) in columnar format. These columns may be
referred 10 in the giraphe3 command file by names such as "# 1" or "# 3". Alternatively, one
may label the columns inside the data file, with a line beginning ".col” followed on that line by
the names of the respective columns. Names of parameters may also be defined with a ".par”
line, followed by the names of parameters (all parameters must be defined on the same .par
line). The values of these parameters are set with ".set", followed by the parameter name, an
equal character, and its value; this is equivalent to a column by that name with all entries equal
to the value. For instance, the parameter "vt" is declared with ".par vt", and can be set any-
where later in the file with ".set vt= 1.45". Comment lines may be inserted anywhere in the
data file, with a ".remark” at the beginning of the line.

EXPRESSION EVALUATOR

FILES

A powerful expression evaluator is included in giraphe3 to make it easy to deal with large
amounts of data, as well as to perform some amount of data reduction on raw data before plot-
ting. The evaluator provides infix notation operations that one is used to, include "+ ", "+", "-",
", "ss" or ™" for exponentiation, and "%" for modulo. In addition, a number of predefined
mathematical functions are provided (see 3m man pages for descriptions of these functions).

These functions, used as "log(x)", include "abs", "acos”, "asin”, "atan”, "ceil”, "cosh”, "cos”,
“Cot"' llerfc", I|erf‘"’ "cxplO"' llexpl" IIﬂoOrll’ "logloll’ "log“‘ “sinhll' I|sinl|' "sqrt"’ "tanh“’ l!lan“‘
and "print". Finally, boolean operations including ™", ™= ", ™", "< =" "> =" "<>", "> ",
", "==" "&&", "', and "= " are provided. These are supplemenied by a number of

predefined constants, including "# pi", "# e", "# gamma", "# phi", "# q", "# h", "# hbar", "# NAvg",
"# me", "# kboltz", "# c", "# true”, and "# false”.

The expression evaluator is available for two kinds of use in giraphe3. The first of these is in
calculating or extracting values to be put into the x, y, and z (or family) arrays for plotting.
Here, one typically reads some column or combination of columns, and performs numerical cal-
culations before they are assigned to the "xexp”, "yexp", or "family" values in the read state-
ment. For instance, the argument "xexp= # 1+ log(vt*1.1)" would assign x with the value of
column one added to the log of one plus whatever value (either a parameter or a column™) vt

holds.

The second primary use is to "filter” the specified data. For instance, one may only want to plot
points where vt is between 1 and 2. In this case, the boolean parameters are used to write,
"filter= vt> = 1&&vi< = 2",

/cad/lib/ giraphe3.syn

SEE ALSO

Example giraphe3 command files can be found in /cad/src/ giraphe3/ examples.

For high quality hard copy plots (limited to PostScript output), the plotting package of Merit
Hung is of interest. For manipulation of "tables” of numeric data, see the graph+ routines.

AUTHORS

BUGS

Robert Harris and Duane Boning, Massachusetts Institute of Technology

The parameters on input lines must be reasonable, or program may bomb.
The program currently demands that the command file have the ".grp” extension.

Warning: With postscript output, an error may cause no page to be printed.

4th Berkeley Distribution February 24, 1987 8

GIRAPHE3(CAD) UNIX Programmer’s Manual GIRAPHE3(CAD)

The error messages generated by the program are usually cryptic.

Program occasionally core dumps with no good error message. When this happens, the termi-
nal is sometimes left in raw mode (because of MFB), even if output was going to a file.

It’s a new program, so there may be many unknown bugs. Bug reports should include the

giraphe3 version number, and as much as you can tell about the problem. Address reports to
bug-giraphe@bacall.mit.edu.

4th Berkeley Distribution February 24, 1987 9

